
Industrial Strength Pipes
a pipeline toolkit for image processing

Jim Garlick

garlick1@llnl.gov

Center for Application Development and Software Engineering

Lawrence Livermore National Laboratory

ICE Project Meeting, Dec. 15, 2004 – p.1/28

Outline

�

Introduction

�

Application Programming Interface

�

Data-Parallel Execution

�

Example: SuperMACHO PhotPipe

�

Status and Future Work

ICE Project Meeting, Dec. 15, 2004 – p.2/28

Introduction

ICE Project Meeting, Dec. 15, 2004 – p.3/28

Introduction

�

Purpose: Provide API for passing image processing
data between filters and a scheme for executing
pipelines on large machines.

�

Goal: Easy to learn and use.

�

Goal: Give users data-parallel execution "for free".

�

Goal: Enable further middleware research.

�

ISP was influenced by MapReduce from Google and
GridDB from UC Berkeley

ICE Project Meeting, Dec. 15, 2004 – p.4/28

Overview

�

Filters are linked to libisp.a, include isp.h.

�

The shell and UNIX pipes tie filters together.

�

Pipes carry XML stream of “work units”.

�

Work units contain files (passed by reference).

�

Work units contain metadata (passed by value).

�

Filters produce, consume, or pass through data.

ICE Project Meeting, Dec. 15, 2004 – p.5/28

ISP Architecture

ICE Project Meeting, Dec. 15, 2004 – p.6/28

ISP Filters Process “Work Units”

ICE Project Meeting, Dec. 15, 2004 – p.7/28

Application Programming Interface

ICE Project Meeting, Dec. 15, 2004 – p.8/28

Filter Mainline Interface

Initialization and Finalization

void isp_init(int flags, int argc, char *argv[]);

void isp_fini(void);

Unit Creation and Destruction

isp_unit_t isp_unit_create(int seq);

void isp_unit_destroy(isp_unit_t u);

Unit Read and Write

isp_unit_t isp_unit_read(void);

void isp_unit_write(isp_unit_t u);

Unit Map

typedef int (*isp_mapfun_t)(isp_unit_t u, void *arg);

void isp_unit_map(isp_map_fun_t mapfun, void *arg);

ICE Project Meeting, Dec. 15, 2004 – p.9/28

Filter Mainline Example

#include <isp.h>

int MyFun(isp_unit_t u, void *arg);

int main(int argc, char *argv[]);
{

isp_init(ISP_SOURCE | ISP_SINK | ISP_PARALLEL, argc, argv);
isp_unit_map(MyFun, NULL);
isp_fini();

}

ICE Project Meeting, Dec. 15, 2004 – p.10/28

Map Function Interface

File Manipulation

int isp_file_source(isp_unit_t u, char *key, char *path, int readonly);

char * isp_file_update(isp_unit_t u, char *key);

char * isp_file_peek(isp_unit_t u, char *key);

int isp_file_sink(isp_unit_t u, char *key);

int isp_file_rename(isp_unit_t u, char *key, char *newpath);

char * isp_mktmp(int *fd);

Metadata Manipulation

int isp_meta_source(isp_unit_t u, char *key, char *val);

int isp_meta_sourcef(isp_unit_t u, char *key, char *fmt, ...);

int isp_meta_update(isp_unit_t u, char *key, char *val);

char * isp_meta_peek(isp_unit_t u, char *key);

int isp_meta_peekf(isp_unit_t u, char *key, char *fmt, ...);

int isp_meta_sink(isp_unit_t u, char *key);

ICE Project Meeting, Dec. 15, 2004 – p.11/28

Map Function Example

float GetFITSFloat(char *path, char *name);

int MyFun(isp_unit_t u, void *arg)
{

char *path = isp_file_peek(u, "fits");

if (path == NULL) {
err("could not find fits file in input");
return ISP_RET_FAIL;

}
isp_meta_sourcef(u, "X", "%f", GetFITSFloat(path, "X"));
isp_meta_sourcef(u, "Y", "%f", GetFITSFloat(path, "Y"));

return ISP_RET_OK;
}

ICE Project Meeting, Dec. 15, 2004 – p.12/28

Data-Parallel Execution

ICE Project Meeting, Dec. 15, 2004 – p.13/28

Kinds of Parallelism

�

Pipeline parallelism - filters execute concurrently, each
processing work units sequentially.

�

Data Parallelism - filters process multiple work units
concurrently.

�

Algorithmic Parallelism - filters execute a parallel
algorithm on each work unit.

ICE Project Meeting, Dec. 15, 2004 – p.14/28

Data-Parallel Execution

�

Map function is executed concurrently on work units.

�

Filter requests parallelism via ISP_PARALLEL flag.

�

Data-Parallel implementation could use...

�

Pthreads on an SMP.

�

Fork/exec on an SMP.

�

Resource Manager on a distributed memory
machine.

�

The implementation is hidden from filter programmers.

ICE Project Meeting, Dec. 15, 2004 – p.15/28

Data-Parallel Execution with Pthreads

�

Main thread manages work crew of threads.

�

Mutexes protect XML I/O.

ICE Project Meeting, Dec. 15, 2004 – p.16/28

Data-Parallel Execution with Fork/exec

�

Parent manages work crew of slave processes.

�

Parent must multiplex several I/O streams.

ICE Project Meeting, Dec. 15, 2004 – p.17/28

Data-Parallel Execution with SLURM

�

Allocator manages requests for CPU/nodes (FIFO).

�

Each slave handles one work unit.

�

Filter programmers do not need to understand this!

ICE Project Meeting, Dec. 15, 2004 – p.18/28

ISP Scripts

�

This script can run standalone, under srun
(interactive), or under psub (batch).

#!/bin/bash
if test $SLURM_NODEID; then

if test $SLURM_NODEID != 0; then
exit 0

fi
ispallocd -S &

fi
filter1 | filter2 | filter3 >results.xml

ICE Project Meeting, Dec. 15, 2004 – p.19/28

Example: SuperMACHO Photpipe

ICE Project Meeting, Dec. 15, 2004 – p.20/28

Photpipe Introduction

�

Photpipe performs photometry tasks for the
SuperMACHO project.

�

It converts FITS files CMP files.

�

A collection of Perl scripts orchestrates execution.

�

Algorithms are separately developed programs, mainly
“manna” (image flattening), “cdophot” (source
detection), and “cleanim” (file format conversion, etc.).

ICE Project Meeting, Dec. 15, 2004 – p.21/28

Photpipe with ISP

�

Implemented QUICKDOPHOT CLEANIM;
DOPHOT CLEANIM stages.

�

Did not implement FLATTEN stage.

�

Some minor algorithmic stuff in perl was converted to
additional “stages” in ISP.

�

Example: some parameters needed for cdophot were
created by reading values from FITS header and
performing arithmetic on them.

�

This was obfuscated by several layers of nested perl
functions in Photpipe.

ICE Project Meeting, Dec. 15, 2004 – p.22/28

Photpipe with ISP

ICE Project Meeting, Dec. 15, 2004 – p.23/28

MCR Photpipe Scaling Study

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

R
un

 T
im

e
(m

in
ut

es
)

CPU Count

MCR Photpipe Runs Nov 2004

71 images (1 amp)
142 images (2 amps)
213 images (3 amps)
284 images (4 amps)

ICE Project Meeting, Dec. 15, 2004 – p.24/28

Status and Future Work

ICE Project Meeting, Dec. 15, 2004 – p.25/28

Version 0.8 Status

�

C API bindings are provided.

�

Sequential and SLURM data-parallel execution are
supported.

�

The API needs to be tested against more use cases.

�

The filter memory footprint can grow large for
long-running pipelines.

�

Packaging/cleanup is needed before the first external
release.

ICE Project Meeting, Dec. 15, 2004 – p.26/28

Future Work

�

Debugging tools?

�

Checkpoint/restart?

�

Logging facility?

�

Bindings for Python, Perl, C++, Java?

�

More sophisticated pipeline-aware scheduling
algorithm?

�

Scheduling for multiple pipelines via SLURM plug-in
scheduler?

�

Use in GridDB for folding/unfolding?

ICE Project Meeting, Dec. 15, 2004 – p.27/28

Disclaimer and Auspices

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

UCRL-PRES-209205

ICE Project Meeting, Dec. 15, 2004 – p.28/28

	Outline
	Introduction
	Introduction
	Overview
	ISP Architecture
	ISP Filters Process ``Work Units''
	Application Programming Interface
	Filter Mainline Interface
	Filter Mainline Example
	Map Function Interface
	Map Function Example
	Data-Parallel Execution
	Kinds of Parallelism
	Data-Parallel Execution
	Data-Parallel Execution with Pthreads
	Data-Parallel Execution with Fork/exec
	Data-Parallel Execution with SLURM
	ISP Scripts
	Example: SuperMACHO Photpipe
	Photpipe Introduction
	Photpipe with ISP
	Photpipe with ISP
	MCR Photpipe Scaling Study
	Status and Future Work
	Version 0.8 Status
	Future Work
	Disclaimer and Auspices

